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Abstract
Mammalian tribbles homolog 1 (TRIB1) regulates hepatic lipogenesis and is genetically

associated with plasma triglyceride (TG) levels and cholesterol, but the molecular mechanisms

remain obscure. We explored these mechanisms in mouse livers transfected with a TRIB1

overexpression, a shRNA template or a control (LacZ) adenovirus vector. The overexpression of

TRIB1 reduced, whereas induction of the shRNA template increased, plasma glucose, TG, and

cholesterolandsimultaneouslyhepaticTGandglycogen levels.The involvementofTRIB1 inhepatic

lipid accumulation was supported by the findings of a human SNP association study. ATRIB1 SNP,

rs6982502, was identified in an enhancer sequence,modulated enhancer activity in reporter gene

assays, andwas significantly (PZ9.39!10K7) associatedwith ultrasonographically diagnosednon-

alcoholic fatty liver disease in a population of 5570 individuals. Transcriptome analyses of mouse

livers revealed significant modulation of the gene sets involved in glycogenolysis and lipogenesis.

Enforced TRIB1 expression abolished CCAAT/enhancer binding protein A (CEBPA), CEBPB, and

MLXIPL proteins, whereas knockdown increased the protein level. Levels of TRIB1 expression

simultaneously affectedMKK4 (MAP2K4), MEK1 (MAP2K1), and ERK1/2 (MAPK1/3) protein levels

andthephosphorylationofJNK,butnotofERK1/2.Pull-downandmammaliantwo-hybridanalyses

revealed novel molecular interaction between TRIB1 and a hepatic lipogenic master regulator,

MLXIPL. Co-expressionof TRIB1andCEBPAorMLXIPL reduced their protein levels andproteasome

inhibitorsattenuatedthe reduction.Thesedata suggestedthat themodulationofTRIB1expression

affects hepatic lipogenesis and glycogenesis through multiple molecular interactions.
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Plasma concentrations of lipids are a heritable risk factor

for the development of atherosclerosis and related

cardiovascular diseases (CVDs). High concentrations of

LDL-associated cholesterol elevate the risk of ischemic

heart disease and high concentrations of HDL-associated

cholesterol reduce the risk (Law et al. 2003, Lewington

et al. 2007). An increase in plasma triglyceride (TG)

concentrations is also an independent risk factor for CVD

(Bansal et al. 2007, Nordestgaard et al. 2007). The European

genome-wide SNP association studies (GWAS) have

associated 95 loci with blood lipid levels (Teslovich et al.

2010). The downstream linkage disequilibrium (LD) block

of mammalian tribbles homolog 1 (TRIB1) is one locus

that has convincing impact on CVD and levels of TG and

LDL across several ethnic groups (Nakayama et al. 2009,

Teslovich et al. 2010). A functional study using knockout

mice and overexpression experiment has confirmed TRIB1

involvement in hepatic lipogenesis, which affects very

low density lipoprotein (VLDL) production (Burkhardt

et al. 2010). However, the molecular mechanisms remain

unknown. Therefore, we explored the molecular pathways

using a mouse model and functional variations in the

LD block that affect levels of TRIB1 expression.

TRIB1, TRIB2, and TRIB3 share 45% peptide sequence

similarity and homology with tribbles (Hegedus et al.

2007), a Drosophila protein that inhibits mitosis during

the early developmental stage by binding to the CDC25

homolog, string (Grosshans & Wieschaus 2000). Genes in

the Tribbles family encode a kinase-like domain but lack

catalytic core motifs and kinase activities (Sung et al.

2006). A carboxy-terminal hexapeptide motif is shared

among the three tribbles proteins and it is the binding site

for E3 ubiquitin ligase constitutive photomorphogenic

protein 1 (COP1) that participates in the proteasome-

mediated degradation of some targets of tribbles (Qi

et al. 2006, Yokoyama & Nakamura 2011). TRIB1–3 also

provides a motif for MEK1 binding at near C-termini,

which can enhance or inhibit MEK/MAPK signaling

dependently on cell type and target molecule (Sung et al.

2006). The MEK1 binding domain is also involved

in molecular interaction with CCAAT/enhancer binding

proteins (CEBPA and CEBPB; Keeshan et al. 2006,

Yokoyama et al. 2010). Furthermore, TRIB2 and TRIB3

interact with specific target molecules. Molecular

interactions have been identified between TRIB3 and

acetyl-coenzyme A carboxylase (Qi et al. 2006), Akt

(Du et al. 2003), peroxisome proliferator-activated
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0243 Printed in Great Britain
receptor g (PPARg; Takahashi et al. 2008), CEBP homo-

logous protein (CHOP), and activating transcription

factor 4 (ATF4; Ohoka et al. 2005). Fewer unique target

molecules have been identified for TRIB1 than for TRIB3,

among which factors involved in hepatic lipogenesis

are likely to be included. Target molecules were searched

using mouse models with TRIB1 overexpression or knock-

down predominantly in the liver using an adenoviral gene

delivery system.
Experimental procedures

Adenovirus vector constructs

The open reading frame (ORF) ofTRIB1 cDNA under a CMV

promoter (NM_025195, pAx-CMV-TRIB1) and a mouse

Trib1 shRNA template (pAx-shTrib1; Supplementary

Table 1, see section on supplementary data given at the

end of this article) were inserted into pAxcwit (Takara

Bio, Inc., Otsu, Japan). The control was an adenovirus

encoding LacZ, pAxCA-LacZ. Purified adenovirus vectors

were titrated and 2.0!109 pfu of adenoviruses were

injected into the tail veins of mice.
Animal experiments

Male 12-week-old C57Bl6 mice (CLEA Japan, Inc., Tokyo,

Japan) were housed in an air-conditioned environment

with a 12 h light:12 h darkness cycle. Blood samples were

collected from the tail vein during the morning under

conditions of food intake ad libitum or after 12 h of

starvation. Plasma glucose was measured using Accu-Chek

(Roche Diagnostics). Plasma TG, total cholesterol, and

aspartate aminotransferase (AST) levels were measured

using Fuji Dry Chem System (Fujifilm, Kanagawa, Japan).

Plasma free fatty acid, b-hydroxybutyrate, and insulin

levels were measured by NEFA C Kit (Wako, Osaka, Japan),

fluorometric assay kit (Cayman Chemical Company, Ann

Arbor, MI, USA), and ELISA system (Morinaga, Yokohama,

Japan) respectively. Oxygen consumption (VO2) and

carbon dioxide production (VCO2) were individually

measured indirectly using an Oxymax V5.61 calorimeter

(Columbus Instruments, Columbus, OH, USA). Loco-

motor activity was estimated using an ACTIMO-100

infrared activity monitoring system (Shinfactory,

Fukuoka, Japan). The mice were killed at 4 or 8 days

post-injection after 12 h of starvation. Liver TGs were
Published by Bioscientifica Ltd.
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AUTHOR COextracted in chloroform:methanol (2:1, v/v) and measured

using commercial kits (Wako) (Rahman et al. 2007).

Glycogens were extracted into 5% trichloroacetic acid

and quantified using phenol–sulfuric acid (Matsusue et al.

2004). Frozen sections of mouse liver were stained

with hematoxylin and eosin (H&E), Oil Red O, or PAS.

Hepatocyte apoptosis was assessed using a colorimetric

TUNEL System (Promega). Mice that had fasted for 12 h

were injected with glucose (1.8 g/kg) or insulin (1 U/kg)

i.p. for glucose tolerance test (GTT) and insulin tolerance

test (ITT) respectively. The Animal Care and Use Commit-

tee of Jichi Medical University approved all procedures

involving animals.
Expression profiling

Hepatic total RNA was extracted immediately after killing.

Expression was profiled by hybridization to an Affimetrix

Mouse 430_2 oligonucleotide microarray chip. Pathways

that were significantly enhanced or reduced by altered

TRIB1 expression were searched using Gene Set Enrich-

ment Analysis (GSEA) Software provided by the Broad

Institute (http://www.broad.mit.edu/gesa/) and the Kyoto

Encyclopedia of Genes and Genomes database. The

accuracy of the expression levels of individual genes in

the microarray were confirmed by quantitative RT-PCR

using the primers listed in Supplementary Table 1. Hepatic

protein (20 mg) was separated by electrophoresis in 10%

SDS–PAGE gels and candidate TRIB1 target proteins were

measured by western blotting using the specific primary

antibodies CEBPA, NFkB p65, SREBP1 (against both of

SREBP1a and 1c precursor), p-JNK, JNK and b-actin (Santa

Cruz), CEBPB and MLXIPL (Abcam, Cambridge, UK),

MEK1 (Epitomics, Burlingame, CA, USA), MKK4 and

ERK1/ERK2 (R&D Systems, Minneapolis, MN, USA), and

p-ERK1/ERK2 (Abnova, Taipei, Taiwan).
Assays of molecular interactions

TRIB1 target protein interaction was assessed using the

mammalian two-hybrid and HaloTag mammalian Pull-

Down systems (Promega). Full-length TRIB1 cDNAs or

TRIB1 cDNAs with deleted N-terminal 90 residues (DN90)

and pseudocatalytic loop (DPCL), COP1 (DCOP), or MEK

(DMEK) binding domains were inserted into the pBIND

vector to generate GAL4-fusion proteins. The ORFs of

CEBPA (NM_004364.2), CEBPB (NM_005194.2), and MLX

interacting protein-like (MLXIPL, NM_032951.2) were

inserted into the pACT vector to generate VP16-fusion

proteins. VP16-MLXIPL constructs with a deleted nuclear
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0243 Printed in Great Britain
PY ONLYlocalization signal (DNLS; residues 159–183; Fukasawa

et al. 2010) and basic helix–loop–helix zipper (DbHLH;

residue 648–724; Li et al. 2006) or leucine-zipper-like

(DZIP; residue 792–837; de Luis et al. 2000) domains were

also prepared to search for the interacting domain(s).

These constructs were co-transfected using Lipofectamine

2000 (Life Technologies) into COS7 cells harboring the

pGL4.31 vector. Empty pBIND and pACT vectors served

as negative controls. Firefly reporter expression was

measured 48 h later against Renilla luciferase encoded

by the pBIND vector. Constructs were co-transfected into

COS7 cells and molecular interactions were assessed as

relative luciferase activities. The ORFs of TRIB1, CEBPA,

and MLXIPL were inserted into the pHTN vector or pCR3

vector with an influenza hemagglutinin (HA)-tag for

pull-down assays. Constructs were co-transfected into

COS7 cells and then HaloTag fusion and associated

proteins were extracted from cell lysates using HaloLink

resin. Molecular interactions were compared by western

blotting with anti-TRIB1 (Abgent, San Diego, CA, USA)

and anti-HA (Sigma–Aldrich) antibodies to the empty

pHTN vector as the negative control. Proteasome-

mediated degradation of CEBPA or MLXIPL was examined

by co-transfection in COS7 cells with TRIB1 in pCR3

vectors with or without an inhibitor of the proteasome

system (1 mM epoxomicin or 10 mM MG132 (Sigma)). Cells

were harvested 16 h later and the protein levels were

measured by western blotting.
Survey of functional SNP in the downstream sequence

of TRIB1

The upstream sequence of the TRIB1 gene from K1336 to

K1 relative to the ATG start codon was subcloned into the

pGL3 basic vector and used as the promoter vector. We

selected six conserved sequences in the 25 kb LD block

downstream of TRIB1, through a database search at

ENCODE (ENCODE Project Consortium et al. 2011,

http://genome.ucsc.edu/ENCODE/) and HapMap (http://

hapmap.ncbi.nlm.nih.gov/) (Supplementary Fig. 4, see

section on supplementary data given at the end of this

article). Fragments were amplified from several individuals

and subcloned into the SalI site of the pGL3-TRIB1

promoter vector. Constructs encoding SNP variations

were verified by sequencing and transfected into HepG2

cells along with the pRL vector (Renilla Luciferase;

Promega). Forty-eight hours later, the relative light units

(firefly/Renilla light units) were measured using a dual

luciferase reporter assay system (Promega) and a TD-20/20

luminometer (Turner Designs, Sunnyvale, CA, USA).
Published by Bioscientifica Ltd.
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fatty liver disease

The first association study comprised 3013 participants,

recruited from outpatients whose general health was

assessed at Jichi Medical University Hospital. The second

population comprised samples whose hepatic ultrasono-

graphic information was extracted from a database of21 004

Japanese individuals (Nakayama et al. 2009). Experienced

clinical technologists performed hepatic ultrasonography

under the guidance of clinicians who reviewed photocopies

of the scans. We excluded participants with known liver

diseases or those who consumed O20 g/day of alcohol. The

Ethics Committee at Jichi Medical University approved the

study protocol and all recruits provided written informed

consent to participate. The genotypes of rs6982502,

rs17321515, and rs2980867 were determined using the

TaqMan system. The effects of the risk allele on non-

alcoholic fatty liver disease (NAFLD) and log-transformed

plasma TG were assessed by logistic regression models and

multiple regression analysis assuming an additive model

of inheritance respectively. Age, sex, BMI, and a clinical

history of diabetes were included in both models. Data

were statistically analyzed using SPSS 11.0 (SPSS Japan).
Results

Overexpression and knockdown of TRIB1 influenced

multiple metabolic parameters in mice

We determined whether variable expression levels of

TRIB1 affect hepatic lipid storage using an adenoviral

gene delivery system to modulate TRIB1 expression in the

mouse liver. X-gal staining of mouse organs injected with

pAxCA-LacZ validated nearly exclusive hepatic induction

of the adenovirus vector system. The expression of TRIB1

protein that was above physiological levels on day 4 after

pAx-CMV-TRIB1 injection (Supplementary Fig. 1A, see

section on supplementary data given at the end of this

article) became almost equivalent to the level of internal

TRIB1 in the control by day 8. However, reduction of

the TRIB1 protein level from days 4 to 8 (K98%) was

inconsistent with that of the transcript level (K89%)

(Supplementary Fig. 1B), suggesting post-translational

negative regulation of TRIB1. The knockdown vector,

pAx-shTrib1, reduced the protein and mRNA levels to

about 60–80% of the control vector without affecting Trib2

and Trib3 expression (Supplementary Fig. 1A, C and D).

The enforced expression and knockdown of TRIB1 signi-

ficantly decreased and increased plasma TG levels in mice
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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PY ONLYfed ad libitum respectively (Table 1), while the difference in

TG levels between knockdown and control mice at day 4

failed to achieve statistical significance. Plasma TG levels in

starved mice did not significantly differ. Total cholesterol

levels were also decreased and increased by TRIB1 over-

expression and knockdown at day 8 respectively. The

overexpression of TRIB1 notably decreased, whereas its

knockdown increased plasma glucose levels but did not

significantly affect insulin levels. The body weight and

epididymal fat pads of mice overexpressing TRIB1 were

significantly decreased, although food intake, locomotor

activity, and O2 consumption were equivalent to those

of mice harboring the control vector (Table 1, Fig. 1A, and

Supplementary Fig. 2, see section on supplementary data

given at the end of this article). The respiratory exchange

ratio (RER) was significantly repressed by TRIB1 over-

expression (Fig. 1A and Supplementary Fig. 2). Increased

b-hydroxybutyrate (Table 1) and repressed RER simul-

taneously suggested relatively decreased carbohydrate

consumption and increased lipid b-oxidation in mice

overexpressing TRIB1. Knockdown of Trib1 increased the

glucose level at the late phase of GTT (Fig. 1B), while

the glucose level in ITT fell essentially to control levels

(Fig. 1C), suggesting that hepatic knockdown of Trib1

impaired glucose tolerance but not systemic insulin

sensitivity. Baseline glucose levels of the mice tested GTT

and ITT were not equivalent to the data of simple blood

collection under fasting, probably due to their diversified

nutritional and sampling condition. The knockdown of

TRIB1 expression increased hepatic lipid droplets and

PAS-stained material at day 8 (Fig. 1D), which reflected

the 160 and 166% increases in TG and glycogen levels in

the extracts respectively (Fig. 1E and F). In contrast, TRIB1

overexpression decreased TG and glycogen by 29 and 98%

respectively. Leukocyte infiltration of the liver under

conditions of enforced Trib1 expression was remarkable

at day 8 (Fig. 1D). Leukocytes were barely detectable at

day 4, but the number of TUNEL-positive hepatocytes

was significantly increased in mice overexpressing TRIB1

(Fig. 1D and G). Hepatocyte destruction might have

resulted in the remarkably increased plasma AST level of

TRIB1 overexpression (Table 1). The relatively mild AST

increase in mice with TRIB1 knockdown and those injected

with the LacZ vector might have resulted from inflam-

mation induced by adenovirus.
Pathway analysis using hepatic transcriptome

We assessed the expression profiles of total RNA in mouse

livers at 4 and 8 days after adenovirus injection using
Published by Bioscientifica Ltd.
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AUTHOR COPY ONLYTable 1 Blood parameters and tissue weight of mice injected with AV. Values are meanGS.E.M. of seven to eight animals. Blood

samples were drawn from tail vein under ad libitum feeding (Fed) or 12-h fasting (Fasting) at ZT0 or ZT12 respectively. Killing of

the animals was performed after 12-h fasting at the indicated date from the administration of AV vectors

sh LacZ TRIB1

t-test

sh vs LacZ LacZ vs TRIB1

Day 4
Change of body weight (g) 0.05G0.32 0.07G0.37 K1.52G0.49 NS !0.01
Food intake (g/day) 2.49G0.11 2.34G0.12 2.29G0.10 NS NS
Plasma glucose (mg/dl)
Fed 236.9G26.9 223.8G23.9 126.4G23.9 NS !0.01
Fasting 196.0G33.9 172.8G25.6 95.0G19.1 NS !0.01

Plasma triglyceride (mg/dl)
Fed 95.0G9.6 93.8G19.2 22.0G8.0 NS !0.01
Fasting 27.8G2.8 28.0G5.7 30.8G3.8 NS NS

Total cholesterol (mg/dl)
Fed 70.0G13.1 58.0G8.7 67.7G3.5 NS NS
Fasting 66.5G9.8 50.7G6.8 40.7G5.9 NS NS

Free fatty acid (mEq/l)
Fed 0.47G0.10 0.58G0.19 0.54G0.14 NS NS
Fasting 0.58G0.02 0.66G0.19 0.55G0.23 NS NS

b-Hydroxybutyrate (mmol/l)
Fasting 84.5G13.5 79.6G28.2 124.5G16.5 NS !0.05

AST (unit/l)
Fasting 85.4G22.7 103.7G20.6 1007.0G664.8 NS !0.01

Epididymal fat pada 1.31G0.14 1.27G0.19 0.89G0.29 NS !0.01
Insulin (ng/ml)
Fed 0.19G0.18 0.21G0.18 0.16G0.12 NS NS
Fasting 0.32G0.16 0.67G0.23 0.22G0.18 NS NS

Day 8
Change of body weight (g) 0.46G0.40 0.175G0.31 K2.34G0.52 NS !0.01
Food intake (g/day) 2.59G0.15 2.46G0.28 2.39G0.12 NS NS
Plasma glucose (mg/dl)
Fed 240.8G4.8 198.8G29.4 118.0G4.3 !0.01 !0.01
Fasting 154.8G29.1 154.3G26.2 88.3G10.7 NS !0.01

Plasma triglyceride (mg/dl)
Fed 123.3G22.9 95.3G21.6 49.3G14.1 !0.05 !0.01
Fasting 39.5G7.2 47.0G6.5 41.8G9.6 NS NS

Total cholesterol (mg/dl)
Fed 91.8G3.6 82.3G12.2 48.5G12.4 !0.05 !0.01
Fasting 54.0G2.6 51.3G6.0 37.3G5.0 NS !0.01

Free fatty acid (mEq/l)
Fed 0.53G0.02 0.49G0.02 0.487G0.07 NS NS
Fasting 0.77G0.27 0.65G0.10 0.871G0.37 NS NS

b-Hydroxybutyrate (mmol/l)
Fasting 99.7G36.5 123.8G47.9 257.6G61.8 NS !0.05

AST (unit/l)
Fasting 97.7G28.1 346.8G68.0 509.3G85.4 !0.01 !0.01

Epididymal fat pada 1.11G0.04 0.95G0.14 0.66G0.05 NS !0.01
Insulin (ng/ml)
Fed 0.27G0.35 0.57G0.66 0.79G0.28 NS NS
Fasting 0.50G0.52 0.51G0.44 0.16G0.31 NS NS

NS, not significant.
aPercent of body weight.
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microarrays to investigate how TRIB1 modulates hepatic

lipid and glycogen storage. The number of genes with

over a twofold difference in expression between the

overexpression and knockdown groups numbered 2556

and 2158 at days 4 and 8 respectively and 1372 of these

genes were shared. We compared pAx-CMV-TRIB1 with
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0243 Printed in Great Britain
pAxCA-LacZ and pAxCA-LacZ with pAx-shTrib1 at days

4 and 8 using GSEA. The commonly (3/4) enriched gene

sets were regarded as significantly affected pathways. Forty-

five gene sets were commonly enriched by TRIB1

expression (Supplementary Table 2A, see section on

supplementary data given at the end of this article).
Published by Bioscientifica Ltd.
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Figure 1

Effects of modulating TRIB1 expression on glucose, energy metabolism,

liver histology, liver triglyceride (TG), and glycogen storage. (A) Average

values of oxygen consumption (VO2, ml/kg per h) and respiratory exchange

ratios (RER, VCO2/VO2) at day 4. Data were collected for 1 min at 5-min

intervals. The start of the light period was regarded as Zeitgeber time 0

(ZT0). (B) Glucose tolerance test. Average glucose values (mg/dl) of seven

mice per vector (day 8 after vector administration) are shown. (C) Insulin

tolerance test. *P!0.05 and †P!0.01 (Student’s t-test compared with

results using pAxCA-LacZ and pAx-shTrib1 vectors). (D) Representative H&E,

Oil Red O, PAS staining (day 8), and TUNEL study (day 4) of mouse liver

injected with adenoviral vectors. Scale bars indicate 100 mm. (E) TG (mg/g)

and (F) glycogen (mg/g) contents in liver at starvation. (G) TUNEL-positive

cells in liver section (n/field). Data are presented as meansGS.D. (nZ7 per

adenoviral vector). LacZ, control vector encoding LacZ (pAxCA-LacZ); sh,

knockdown vector encoding shRNA template (pAx-shTrib1); and TRIB1,

overexpression vector (pAx-CMV-TRIB1). *P!0.05 and †P!0.01 (Student’s

t-test; significant change by pAx-shTrib1 vs pAxCA-LacZ or pAxCA-LacZ vs

pAx-CMV-TRIB1).
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Although 12 of the enriched gene sets were associated with

pathways involved in immune responses, nine gene sets

were associated with nutrient metabolism. The expression

heat map for starch and sucrose metabolism showed that

TRIB1 overexpression enriched the genes involved in

glycogenolysis and suppressed those involved in glycogen

synthesis. The heat map for glycolysis and gluconeogenesis

showed that the enrichment and depletion of genes (other

than Pklr) involved in glycolysis and gluconeogenesis

respectively (Supplementary Fig. 3A and B, see section on

supplementary data given at the end of this article, and

Fig. 2A). The overexpression of TRIB1 enriched the gene set

for the insulin signaling pathway whereas knockdown

enriched that for maturity onset diabetes (Supplementary
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0243 Printed in Great Britain
Fig. 3C, D and E, and Supplementary Table 2B). These

results are consistent with the low blood glucose levels and

reduced glycogen storage identified in mice overexpressing

TRIB1. Although GSEA did not appear to alter the pathways

of fatty acid biosynthesis and oxidation (possibly due to

the small number of genes involved in the pathway), TRIB1

overexpression downregulated, and knockdown increased

the expression of genes involved in TG biosynthesis (Scd1,

Elovl3, Elovl6, Gpat2, and Dgat2) and Acc1 and Fasn were

downregulated by TRIB1 overexpression at day 4, which

was confirmed by real-time PCR (Fig. 2B). However, four

(Acc1, Fasn, Scd1, and Gpat2) became equivalent at day 8.

The expression levels of the genes for fatty acid oxidation

(Acox1, Echs, Ehhadh, and Cpt1a) were inconsistent with the
Published by Bioscientifica Ltd.
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Figure 2

Expression levels of mRNA involved in glucose–glycogen (A) and lipid (B)

metabolism quantified by real-time PCR analysis in the adenovirus-injected

liver. Y-axis values show relative expression levels of respective genes

against housekeeping gene, 36b4. Data represent meansGS.D. (nZ7

per adenoviral vector). *P!0.05 and †P!0.01 (Student’s t-test).
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lipid levels. Among the transcription factors involved

in lipogenesis, Mlxipl expression was significantly increased

by knockdown and decreased by TRIB1 overexpression, but

levels of Srebp1 transcripts did not change (Fig. 2B).
Western blotting of potential targets of TRIB1

TRIB1 interacts with COP1, CEBPA, CEBPB, MEK1,

p65/RelA, and MKK4 (Hegedus et al. 2007). Levels of

CEBPA and CEBPB were significantly decreased in the liver

overexpressing TRIB1 and increased by knockdown

(Fig. 3A). TRIB1 overexpression increased and decreased

MEK1 (MAP2K1) by days 4 and 8 respectively and

increased protein levels of MKK4 (MAP2K4) (Fig. 3B).

Although MKK4 are scaffold activators of JNK, TRIB1

overexpression, and knockdown did not influence their

protein levels, but overexpression downregulated the

phosphorylation of 183/185Tyr (Fig. 3B). Erk protein

levels were significantly increased by TRIB1 overexpres-

sion and decreased by knockdown, while phosphorylation

was not influenced (Fig. 3B). Multiple changes in the

transcript levels involved in TG synthesis suggested

modulation of the hepatic lipogenic master regulators,
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0243 Printed in Great Britain
SREBP1 and MLXIPL. Enforced TRIB1 expression abolished

MLXIPL protein on both days 4 and 8, whereas knock-

down increased the protein level to 4.8- and 4.9-fold that

of control on days 4 and 8 respectively (Fig. 3A). While

TRIB1 expression level did not influence levels of Srebp1

mRNA, protein levels were increased by TRIB1 over-

expression and decreased by knockdown at day 8

(Fig. 3A), indicating that the change in the SREBP1 protein

level was a compensatory phenomenon against the

exhaustion of hepatic lipid content, which might have

resulted in the partial recovery of transcript levels of TG

synthetic genes.
Molecular interaction between TRIB1 and MLXIPL

We examined whether the disappearance of MLXIPL

caused by TRIB1 overexpression resulted from their

molecular interaction using mammalian two-hybrid and

pull-down assays. Interaction between GAL4-TRIB1 and

VP16-MLXIPL fusion proteins significantly enhanced

reporter gene expression as did interactions with VP16-

CEBPA and VP16-CEBPB (Fig. 4C). The interaction with

MLXIPL was attenuated by deletion of the NLS or the
Published by Bioscientifica Ltd.
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Figure 3

Effects of modulation of TRIB1 expression on target proteins. (A) Western

blots. Hepatic protein (20 mg) resolved by electrophoresis was transferred

onto PVDF membranes and immunoblotted with respective primary

antibodies against CEBPA, CEBPB, MEK1, MKK4, NFkB p65, SREBP1,

MLXIPL, and b-actin. (B) Effects of modulation of TRIB1 expression on

phosphorylation of proteins in MAPK cascade. Western blotting using

antibodies against p-JNK, JNK, p-ERK1/ERK2, and ERK1/ERK2. Signals were

quantified by densitometry and normalized to b-actin levels. Bar graphs

show relative amounts of respective band intensities (meansGS.D.; nZ7).

Control values (pAxCA-LacZ) are defined as 1. *P!0.05 and †P!0.01

(Student’s t-test).
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bHLH domain and disappeared in the absence of a ZIP

domain (Fig. 4A and C). The interaction also disappeared

when the pseudocatalytic loop or MEK1 binding domain

of TRIB1 was removed from the VP16 fusion proteins and

became significantly attenuated by deleting the COP1

binding domain (Fig. 4B and D). We tested mutual

co-precipitation using HaloTag fusion proteins to verify
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0243 Printed in Great Britain
interaction between TRIB1 and MLXIPL. Halo-CEBPA

and halo-MLXIPL co-precipitated TRIB1 proteins, and,

conversely, halo-TRIB1 co-precipitated CEBPA and

MLXIPL (Fig. 4E). We then examined the involvement of

the proteasome system in the regulation of CEBPA and

MLXIPL protein levels through interaction with TRIB1.

Co-expression with TRIB1 remarkably reduced CEBPA or
Published by Bioscientifica Ltd.
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Figure 4

Studies of molecular interaction of TRIB1 with CEBPA, CEBPB, and MLXIPL.

Constructs of MLXIPL mutants. NLS, nuclear localization signal; bHLH, basic

helix–loop–helix zipper domain; and ZIP, leucine-zipper-like domain.

(B) Constructs of TRIB1 mutants. BD, binding domain and PCL, pseudo-

catalytic loop. (C) Mammalian two-hybrid assay. Vectors pBIND-empty or

pBIND-TRIB1 were co-transfected with indicated pACT vectors into COS7

cells harboring pGL4.31 vector. Values are relative light units (fire-

fly/Renilla, meansGS.D.) of independent experiments in quadruplicate.

*P!0.05 and †P!0.01 (Student’s t-test; pACT vs pACT-empty and pBIND-

TRIB1 vectors). (D) Full-length TRIB1 cDNAs or TRIB1 cDNAs with deleted

N-terminal 90 residues (DN90), pseudo-catalytic loop (DPCL), COP1 (DCOP),

or MEK (DMEK) binding domains were co-transfected with pACT-MLXIPL,

CEBPA, or CEBPB vector. *P!0.05 and †P!0.01; significant reduction

compared with pBIND-TRIB1. (E) Pull-down assays. ORFs of TRIB1 (T), CEBPA

(C), and MLXIPL (M) were inserted into pHTN vector or pCR3 vector with

influenza hemagglutinin (HA)-tag. Negative control was empty pHTN

(E) vector. Constructs were co-transfected into COS7 cells and then HaloTag

fusion and associated proteins were extracted from cell lysates using

HaloLink resin. Molecular interactions were assessed by western blotting

using anti-TRIB1 or anti-HA antibodies (pull-down). (F) TRIB1 induced

degradation of CEBPA and MLXIPL. COS7 cells were transfected with pCR3-

HA-CEBPA (A) or -MLXIPL (M) along with pCR3-TRIB1 (C) or pCR3-empty

(K) vector with or without proteasome inhibitor (epoxomicin or MG132).

Protein levels were assessed by western blotting.
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MLXIPL protein levels and preoteasome inhibitors rescued

CEBPA and MLXIPL from the reduction (Fig. 4F). The

proteasome inhibitors simultaneously increased TRIB1

protein levels. These results indicated that molecular

interactions between TRIB1 and CEBPA as well as MLXIPL

accelerate their decay, and interaction of TRIB1 with the

target proteins accelerated the decay of itself. Accelerated

decay of TRIB1 may potentially explain the continuously

repressed MLXIPL until day 8 of TRIB1 overexpression

mice, while TRIB1 protein levels greatly reduced to nearly
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0243 Printed in Great Britain
physiological levels under still excessive human TRIB1

mRNA levels (Supplementary Fig. 1A and B).
Identification of regulatory elements and SNP in the

downstream of TRIB1

To investigate whether the LD block at the downstream

of TRIB1 encodes regulatory elements and whether

variations in the sequence affect the regulatory function,

we constructed luciferase reporter vectors that individually
Published by Bioscientifica Ltd.
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AUTHOR COencoded six conservative fragments and the variants

of high frequent SNPs (Fig. 5A). Whereas none of the

constructs exhibited any enhancement activities in 293

and COS7 cells (not shown), fragment 1 (C34 834 to

36 474; relative distance from 1st ATG of TRIB1) showed

5.2- and 4.4-fold enhanced activities in HepG2 cells

(Fig. 5A). The allelic difference in the activities was

statistically significant. Fragments 2, 3, 5, and 6 did not

exhibit either enhancing activities or allelic differences in

HepG2 cells. Fragment 4 showed weak (1.31 and 1.34)

activities but the difference in rs2980867 variation was not

statistically significant. Our cloned fragment 1 encoding

five SNP variations was further analyzed by constructing

deletion derivatives to identify a functional base sub-

stitution. The 3 0 quarter of fragment 1 (C36 183 to 36 474)

encoding rs6982502 retained enhancement activities and

an allelic difference. Although most of the enhancement

activities of the fragment were lost by further 3 0 deletion,

activity differed in the remaining sequence (C36 184 to

36 246) upon nucleotide substitution with rs6982502

(Fig. 5B). Therefore, we speculated that rs6982502 was

a principal candidate for functional variation in the 25 kb
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Figure 5

Reporter gene assays of human TRIB1 downstream sequences. Upstream

sequence of TRIB1 gene from K1336 to K1 relative to ATG start codon

was subcloned into pGL3 basic vector and used as parental vector (A). Six

conservative fragments (Supplementary Fig. 4) were inserted at 3 0 position

of luciferase in parental vector. Relative positions of fragments are shown

at both sides of diagram. Sequence variations in six fragments are indicated
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PY ONLYLD block, although obvious disruption of binding motifs

for transcription factors by the SNP was not predicted

through a database search using MatInspector Software

(Genomatix; http://www.genomatix.de/index.html).
TRIB1 SNP was associated with NAFLD diagnosed by

ultrasonography

We assessed the effects of the candidate functional SNPs,

rs6982502 and rs2980867, as well as the initially identified

tag-SNP, rs17321515, on NAFLD in two populations to

determine whether or not TRIB1 affects hepatic lipid

accumulation in humans. The rates of ultrasonographi-

cally diagnosed NAFLD in populations 1 and 2 were 34.7

and 28.8% respectively. The genotype frequencies of the

three SNPs conformed to Hardy–Weinberg predictions in

these populations (Table 2). When age, sex, BMI, and

clinical history of diabetes were the covariates, the three

SNPs became significantly associated with ultrasono-

graphic NAFLD and plasma TG in both populations

(Table 2). The minor allele of rs6982502, C, maximally

increased the risk of NAFLD (PZ9.39!10K7; odds ratio,
0

0 2

†

†

†

*

*

*
4 6 8 10

1 2 3 4 5 6 7

by rs numbers. Major and minor alleles of SNPs are indicated by capital and

lowercase letters respectively. Relative activities (firefly/Renilla light units)

against parental vector are shown. Relative activities of deletion mutants

of Fr.1 (B). *P!0.05 and †P!0.01 (Student’s t-test; among major and minor

allele constructs).
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PY ONLY1.27, 95% CI 1.17–1.39 (combined analysis)) and plasma

TG level (PZ3.58!10K6) among the three SNPs (Table 2).
Discussion

We found that TRIB1 expression levels in the liver affected

plasma and hepatic lipid levels in mouse models. Changes

in plasma TG level were consistent with those of previous

studies that included systemic knockout mice and hepatic

overexpression via adeno-associated virus vector (AAV)

(Burkhardt et al. 2010), but changes in hepatic lipid

and glycogen levels were novel findings of this study.

Therefore, we further examined the molecular mechanisms

of TRIB1 in hepatic lipid accumulation using mouse

models and genetic associations in a Japanese population

that was ultrasonographically diagnosed with NAFLD.

Hepatic transcriptome analysis showed that TRIB1 over-

expression downregulated multiple genes that are involved

in TG synthesis, gluconeogenesis, and glycogen synthesis.

Burkhardt et al. (2010) found repressed levels of lipid

oxidation transcripts (Cpt1a, Cpt2, and Acox1) in knockout

mice, whereas Acox1 was repressed and Cpt1a expression

was not affected in mice overexpressing TRIB1 in this study,

suggesting that TRIB1 does not regulate expression levels

of the genes that are involved in lipid oxidation.

Modulation of the expression of multiple gene sets

involved in nutrition metabolisms suggested that TRIB1

affects transcription factors or signaling molecules based on

its biochemical features.

The expression of TRIB1 modulated the hepatic

protein levels of all potential targets studied. Many studies

have implicated CEBPA and CEBPB in hepatic lipid

biosynthesis (Wang et al. 1995, Lee et al. 1997, Matsusue

et al. 2004, Qiao et al. 2006, Rahman et al. 2007,

Schroeder-Gloeckler et al. 2007). Constituents of the

MAPK pathway have also been implicated in steatohepa-

titis (Schattenberg et al. 2006). In addition to these,

MLXIPL protein levels in the liver injected with

adenovirus vectors suggested that MLXIPL regulates the

TRIB1-induced modulation of hepatic lipid storage.

Molecular interaction studies showed that MLXIPL is a

novel target protein downregulated by TRIB1. MLXIPL is a

glucose sensor that is involved in hepatic liponeogenesis

(Uyeda & Repa 2006). The SNPs of MLXIPL are closely

associated with human plasma TG (Teslovich et al. 2010)

and knockout mice are resistant to steatohepatitis (Dentin

et al. 2006). Activated and nuclear translocated MLXIPL

binds to carbohydrate-responsive element in lipogenic

genes and upregulates the transcription of Pklr, Acc1,

Fasn, and Mlxipl itself (Dentin et al. 2006, Denechaud
Published by Bioscientifica Ltd.
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expression in this study, supporting the notion that TRIB1

modulates MLXIPL control of lipogenesis.

This study also found that TRIB1 negatively regulates

hepatic glycogen storage. Insulin signals are thought

to comprise a principal regulator of glycogen synthesis;

glycogen synthesis was downregulated while the gene set

for the insulin signaling pathway was upregulated.

Furthermore, TRIB1 expression downregulated the gene

set for gluconeogenesis. These results resembled the

changes in glycogen storage caused by the genetic

disruption of Cebpa in mice, which results in decreased

hepatic glycogen and gluconeogenesis (Bezy et al. 2007,

Wang et al. 2009). These facts indicated that enhanced

CEBPA decay probably mediated glycogen exhaustion and

low plasma glucose in mice overexpressing TRIB1.

Previous studies have identified molecular interaction

between TRIB1 and NFkB p65, which enhances inflam-

mation in adipose tissue (Ostertag et al. 2010). This study

also found that TRIB1 overexpression significantly

increased, whereas knockdown decreased levels of p65

protein. The overexpression of TRIB1 also enhanced

mRNA levels of the gene set for cytokine–cytokine

receptor interaction (Supplementary Table 2A). Leukocyte

infiltration on day 8 might have resulted from activation

of the NFkB pathway. Hepatic inflammation is thought

to be a major contributor to the progression from simple

steatosis to non-alcoholic steatohepatitis (NASH; Vanni

et al. 2010). Insulin-resistant adipose tissue is thought

to be the principal pathogenic source of adipokines and

cytokines that are involved in hepatic inflammation.

Further studies using conditional knockout mice are

required to determine whether or not TRIB1 is involved

in the pathogenesis of NASH.

Implication of TRIB1 in apoptosis for leukemogenesis

is under dispute. Gilby et al. (2010) showed that TRIB1

enhanced apoptosis of leukemic cell line through suppres-

sion of JNK–Bcl-2 pathway. Yokoyama et al. (2010) showed

that TRIB1 suppressed apoptosis through enhancement of

Erk phosphorylation. TRIB1 overexpression in mouse liver

reduced phosphorylation of JNK but did not affect on

phosphorylation of Erk and enhanced the apoptosis of

hepatocytes, which might have resulted in the massive

elevation of plasma AST levels. Molecular mechanisms

in cell type-specific regulation of MAPK pathway by TRIB1

should be resolved further.

Through functional screening in vitro, we identified a

DNA fragment (Fr.1) in the downstream LD block of TRIB1

that had substantial enhancement activities in HepG2 cells

but not in COS7 and 293 cells. The presence of an enhancer
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0243 Printed in Great Britain
PY ONLYelement in Fr.1 was supported by the ENCODE database

showing methylation of lysine 4 of H3 histone (H3K4Me3),

DNaseI hypersensitivity clusters and the ChIP-seq in

HepG2 cells (Supplementary Fig. 4), whereas other cell

lines show different H3K4Me3 peaks, suggesting cell-type-

specific use of enhancer elements. The ChIP fragment

generated by anti-p300 of HepG2 cells in the ENCODE

database was identical to the minimum enhancer fragment

(C36 183 to 36 474). rs6982502 localized in the fragment

and modulated the enhancing activity. Base substitution

of the minor allele of rs6982502, C, attenuated the

enhancement activity to 80.2% of that of the major allele,

T. Indeed, K20% is a small effect, but our knockdown

experiment (20–40% reduction in production of the

transcript) efficiently increased plasma and hepatic lipid,

supporting the notion that rs6982502 is a candidate

functional SNP in the LD block. Our SNP study of

ultrasonographically diagnosed NAFLD showed that a

significant association between rs6982502 and the minor

allele increased risk for NAFLD 1.27-fold. The minor allele

of rs6982502 showed a tight linkage (D0Z0.985, r2Z0.713)

with the risk allele of rs17321515 that the GWAS initially

identified as a tag-SNP that increased plasma TG and LDL

(Kathiresan et al. 2008). Relatively lower levels of TRIB1

expression due to the minor allele of rs6982502 might have

resulted in increased levels of plasma lipid and progression

to hepatic steatosis. While TRIB1 has not been significantly

associated with NAFLD diagnosed by computed tomo-

graphy (CT) (Romeo et al. 2008, Kawaguchi et al. 2012), the

GWAS of plasma AST levels in Europe found a significant

association with the SNP, rs2954021, which localized in

the same LD block as rs17321515 (Chambers et al. 2011).

A weak association between rs2954021 and hepatic

steatosis was also identified (Chambers et al. 2011).

Serum-free fatty acid arising from insulin-resistant adipose

tissue and hepatic lipogenesis de novo increased by

upregulated lipogenic gene expression are regarded as the

principal pathogenetic pathways of NAFLD (Vanni et al.

2010). TRIB1 is considered a potential genetic factor of

NAFLD because of its ability to modulate levels of lipogenic

gene expression. Further genetic studies of various ethnic

groups and haplotype effects are required to confirm the

involvement of TRIB1 in the pathogenesis of NAFLD. The

regulatory mechanisms of TRIB1 expression should also be

revealed further to investigate regimen for the reduction of

fat accumulation in liver. In our preliminary study, a high-

fat diet but not starvation induced the expression of Trib1

mRNA in mouse liver (Supplementary Fig. 5, see section

on supplementary data given at the end of this article).
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AUTHOR COIn summary, chronic (SNP) or acute (adenoviral)

modulation of TRIB1 expression affects hepatic lipid

storage. Changes in hepatic lipid synthesis caused by

TRIB1 were probably mediated, at least in part, by

molecular interaction with the novel target, MLXIPL.
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This is linked to the online version of the paper at http://dx.doi.org/10.1530/
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